Chapter 6 Multiple Choice Review Problems

For Problems 4, 7, 9, and 12 find the area of the region described:

- 4. The parabola $y^2 = x$ and the line x + y = 2.
 - (A) $\frac{5}{2}$ (B) $\frac{3}{2}$ (C) $\frac{11}{6}$ (D) $\frac{9}{2}$ (E) $\frac{29}{6}$

7. The parabolas
$$x = y^2 - 5y$$
 and $x = 3y - y^2$.

(A)
$$\frac{32}{3}$$
 (B) $\frac{139}{6}$ (C) $\frac{64}{3}$ (D) $\frac{128}{3}$ (E) none of these

9. In the first quadrant, bounded below by the x-axis and above by the curves of $y = \sin x$ and $y = \cos x$.

(A) $2 - \sqrt{2}$ (B) $2 + \sqrt{2}$ (C) 2 (D) $\sqrt{2}$ (E) $2\sqrt{2}$

12. The curve of $y = x^3 - 2x^2 - 3x$ and the x-axis.

(A)
$$\frac{28}{3}$$
 (B) $\frac{79}{6}$ (C) $\frac{45}{4}$ (D) $\frac{71}{6}$ (E) none of these

- 14. The area bounded by $y = e^x$, y = 1, y = 2, and x = 3 is equal to
 - (A) $3 + \ln 2$ (B) $3 3 \ln 3$ (C) $4 + \ln 2$ (D) $3 - \frac{1}{2} \ln^2 2$ (E) $4 - \ln 4$

17. The area enclosed by the curve $y^2 = x(1 - x)$ is given by (A) $2 \int_0^1 x \sqrt{1 - x} \, dx$ (B) $2 \int_0^1 \sqrt{x - x^2} \, dx$ (C) $4 \int_0^1 \sqrt{x - x^2} \, dx$ (D) π (E) 2π

18. The area bounded by the parabola $y = 2 - x^2$ and the line y = x - 4 is given by

(A)
$$\int_{-2}^{3} (6 - x - x^2) dx$$
 (B) $\int_{-2}^{1} (2 + x + x^2) dx$ (C) $\int_{-3}^{2} (6 - x - x^2) dx$
(D) $2 \int_{0}^{\sqrt{2}} (2 - x^2) dx + \int_{-3}^{2} (4 - x) dx$ (E) none of these

For problems 25, 27, 29, 31, and 34, find the volume of the solid generated by rotating the given region around the given line:

25. $y = x^2$, x = 2, and y = 0; about the y-axis. (A) $\frac{16\pi}{3}$ (B) 4π (C) $\frac{32\pi}{5}$ (D) 8π (E) $\frac{8\pi}{3}$ 27. $y = x^2$ and y = 4; about the x-axis.

(A) $\frac{64\pi}{5}$ (B) $\frac{512\pi}{15}$ (C) $\frac{256\pi}{5}$ (D) $\frac{128\pi}{5}$ (E) none of these

29.
$$y = x^2$$
 and $y = 4$; about the line $y = -1$.
(A) $4\pi \int_{-1}^{4} (y+1) \sqrt{y} \, dy$ (B) $2\pi \int_{0}^{2} (4-x^2)^2 \, dx$ (C) $\pi \int_{-2}^{2} (16-x^4) \, dx$
(D) $2\pi \int_{0}^{2} (24-2x^2-x^4) \, dx$ (E) none of these

31.
$$y = 3x - x^2$$
 and $y = x$; about the x-axis.
(A) $\pi \int_0^{3/2} [(3x - x^2)^2 - x^2] dx$ (B) $\pi \int_0^2 (9x^2 - 6x^3) dx$
(C) $\pi \int_0^2 [(3x - x^2)^2 - x^2] dx$ (D) $\pi \int_0^3 [(3x - x^2)^2 - x^4] dx$
(E) $\pi \int_0^3 (2x - x^2)^2 dx$

34.
$$y = \ln x, y = 0, x = e$$
; about the line $x = e$.
(A) $\pi \int_{1}^{e} (e - x) \ln x \, dx$ (B) $\pi \int_{0}^{1} (e - e^{y})^2 \, dy$ (C) $2\pi \int_{1}^{e} (e - \ln x) \, dx$
(D) $\pi \int_{0}^{e} (e^2 - 2e^{y+1} + e^{2y}) \, dy$ (E) none of these

- **38.** The base of a solid is the region bounded by the parabola $x^2 = 8y$ and the line y = 4, and each plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is
 - (A) $\frac{64\sqrt{3}}{3}$ (B) $64\sqrt{3}$ (C) $32\sqrt{3}$ (D) 32 (E) none of these
- **39.** The base of a solid is the region bounded by $y = e^{-x}$, the *x*-axis, the *y*-axis, and the line x = 1. Each cross section perpendicular to the *x*-axis is a square. The volume of the solid is

(A)
$$\frac{e^2}{2}$$
 (B) $e^2 - 1$ (C) $1 - \frac{1}{e^2}$
(D) $\frac{e^2 - 1}{2}$ (E) $\frac{1}{2} \left(1 - \frac{1}{e^2} \right)$